Mood Analysis

Mood Analysis

After exploring the details on the data we wanted to try something completely new to us as GI - Students. So we thought (with the help and inspiration of Dr. Euro Beinat) of trying some mood-analysis.

The used methods can basically be applied to any set of message data (like in our case twitter data), we decided to keep it rather small and try it out on the filtered tweets with financial topics. In order to analyse the mood in the tweets containing the money-related terms, around 70 words (and some common smilies) expressing feelings were used. The table containing the relevant tweets is then queried with each  of  the  expressions  and  the  number  of  rows  resulting  from  the  query  is  counted.

The  words  are  either classified  as  positive  or  negative.  Positive  words  are  assigned  a  value  of  1  to  signify  the  feeling,  while the  negative  words  are  assigned  a  value  of  -1.  The  weight  of  each  word  is  obtained  by  dividing  the number  of  rows  containing  that  particular  word  by  the  total  number  of  rows  resulting  from  all  the terms expressing feeling.

The words can then be assigned a value to signify the strength of the feeling, either very positive or very negative (2), or just positive or negative (1). Therefore the moods can be obtained by multiplying the feeling value assigned to the word (simply 1 or -1) by the weight of the word and also by the strength of the word. Since there is uncertainty in the strength variable, the moods are computed in booth variants:



Term
Number
Positive
strength
Weight
Mood
Mood
(without strength)
Happy
1247
1
2
0.03555
0.0711
0.03555
Excited
359
1
2
0.01024
0.02048
0.01024
Great
2032
1
1
0.05793
0.05793
0.05793
Thankful
27
1
1
0.00077
0.00077
0.00077
Merry
103
1
1
0.00294
0.00294
0.00294
Elated
63
1
2
0.00180
0.0036
0.0018
Satisfied
19
1
1
0.00055
0.00055
0.00055
Jubilant
0
1
1
0.00000
0
0
Fortunate
123
1
1
0.00351
0.00351
0.00351
Thrilled
5
1
1
0.00015
0.00015
0.00015
Glad
473
1
1
0.01349
0.01349
0.01349
Optimistic
12
1
1
0.00035
0.00035
0.00035
Wonderful
118
1
1
0.00337
0.00337
0.00337
Ecstatic
4
1
2
0.00012
0.00024
0.00012
Love
5338
1
1
0.15216
0.15216
0.15216
Satisfactory
1
1
1
0.00003
0.00003
0.00003
Gr8
48
1
1
0.00137
0.00137
0.00137
I like
309
1
1
0.00881
0.00881
0.00881
Confident
21
1
1
0.00060
0.0006
0.0006
Calm
169
1
1
0.00482
0.00482
0.00482
Vital
88
1
1
0.00251
0.00251
0.00251
Sure
1761
1
1
0.05020
0.0502
0.0502
Enjoy
499
1
1
0.01423
0.01423
0.01423
Celebrate
46
1
1
0.00132
0.00132
0.00132
Rich
1439
1
1
0.04102
0.04102
0.04102
Wow
549
1
1
0.01565
0.01565
0.01565
Cheerful
12
1
1
0.00035
0.00035
0.00035
Cool
723
1
1
0.02061
0.02061
0.02061
Party
598
1
1
0.01705
0.01705
0.01705
lol
4243
1
1
0.12095
0.12095
0.12095
:-)
2761
1
1
0.07871
0.07871
0.07871
:-(
445
-1
1
0.01269
-0.01269
-0.01269
Sad
1509
-1
2
0.04302
-0.08604
-0.04302
Disappointed
72
-1
2
0.00206
-0.00412
-0.00206
Upset
55
-1
2
0.00157
-0.00314
-0.00157
Furious
25
-1
2
0.00072
-0.00144
-0.00072
Irritated
1
-1
2
0.00003
-0.00006
-0.00003
Useless
78
-1
2
0.00223
-0.00446
-0.00223
Bitter
51
-1
2
0.00146
-0.00292
-0.00146
Provoked
0
-1
2
0.00000
0
0
Hate
1188
-1
2
0.03387
-0.06774
-0.03387
Enraged
1
-1
2
0.00003
-0.00006
-0.00003
Bad
2014
-1
1
0.05741
-0.05741
-0.05741
Poor
55
-1
1
0.00157
-0.00157
-0.00157
Incensed
1
-1
2
0.00003
-0.00006
-0.00003
Terrible
83
-1
2
0.00237
-0.00474
-0.00237
Disgust
68
-1
2
0.00194
-0.00388
-0.00194
Despair
4
-1
1
0.00012
-0.00012
-0.00012
Discouraged
3
-1
2
0.00009
-0.00018
-0.00009
Hurt
163
-1
2
0.00465
-0.0093
-0.00465
Crushed
9
-1
2
0.00026
-0.00052
-0.00026
Bored
203
-1
1
0.00579
-0.00579
-0.00579
Pained
0
-1
1
0.00000
0
0
Grieve
5
-1
1
0.00015
-0.00015
-0.00015
Grief
15
-1
1
0.00043
-0.00043
-0.00043
Mourn
11
-1
1
0.00032
-0.00032
-0.00032
Dismayed
1
-1
2
0.00003
-0.00006
-0.00003
Wary
6
-1
1
0.00018
-0.00018
-0.00018
Unhappy
11
-1
1
0.00032
-0.00032
-0.00032
Unsettled
0
-1
1
0.00000
0
0
Mad
3261
-1
2
0.09296
-0.18592
-0.09296
Unsure
13
-1
1
0.00038
-0.00038
-0.00038
Fool
103
-1
2
0.00294
-0.00588
-0.00294
Pissed off
41
-1
2
0.00117
-0.00234
-0.00117
Angry
118
-1
2
0.00337
-0.00674
-0.00337
Annoyed
44
-1
2
0.00126
-0.00252
-0.00126
Resent
772
-1
1
0.02201
-0.02201
-0.02201
Weary
5
-1
1
0.00015
-0.00015
-0.00015
Never
1458
-1
1
0.04156
-0.04156
-0.04156
Aggregate
35082


1
0.17367
0.32202


From the results, it is evident that the aggregate mood is positive, at a value of 0.17 when the strength of each word is considered and a value of 0.32 when the strength variable is ignored. Based on this, the hypothesis that money buys happiness is confirmed, people at least seem to like to share their financial happines instead of complaining about their financial situation via twitter.


No comments:

Post a Comment